Large Eddy Simulation of Solar Photosphere Convection with Realistic Physics

نویسنده

  • S. D. Ustyugov
چکیده

Three-dimensional large eddy simulations of solar surface convection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the range of convection cell sizes, and the penetration depths of convection are investigated. A portion of the solar photosphere and the upper layers of the convection zone, a region extending 60 × 60 Mm horizontally from 0 Mm down to 20 Mm below the visible surface, is considered. We start from a realistic initial model of the Sun with an equation of state and opacities of stellar matter. The equations of fully compressible radiation hydrodynamics with dynamical viscosity and gravity are solved. We use: 1) a high order conservative TVD scheme for the hydrodynamics, 2) the diffusion approximation for the radiative transfer, 3) dynamical viscosity from subgrid scale modeling. The simulations are conducted on a uniform horizontal grid of 600× 600, with 168 nonuniformly spaced vertical grid points, on 144 processors with distributed memory multiprocessors on supercomputer MVS-15000BM in the Computational Centre of the Russian Academy of Sciences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetohydrodynamic Simulation of Solar Supergranulation

Three-dimensional magnetohydrodynamical large eddy simulations of solar surface convection using realistic model physics is conducted. The effects of magnetic fields on thermal structure of convective motions into radiative layers, the range of convection cell sizes and penetration depths of convection is investigated. We simulate a some portion of the solar photosphere and the upper layers of ...

متن کامل

Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation

Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with size of 60 × 60 Mm in horizontal direction ...

متن کامل

Validation of Time-distance Helioseismology by Use of Realistic Simulations of Solar Convection

Recent progress in realistic simulations of solar convection have given us an unprecedented opportunity to evaluate the robustness of solar interior structures and dynamics obtained by methods of local helioseismology. We present results of testing the time-distance method using realistic simulations. By computing acoustic wave propagation time and distance relations for different depths of the...

متن کامل

The origin of the reversed granulation in the solar photosphere

We study the structure and reveal the physical nature of the reversed granulation pattern in the solar photosphere by means of 3-dimensional radiative hydrodynamics simulations. We used the MURaM code to obtain a realistic model of the near-surface layers of the convection zone and the photosphere. The pattern of horizontal temperature fluctuations at the base of the photosphere consists of rel...

متن کامل

Simulations of stellar convection with CO5BOLD

High-resolution images of the solar surface show a granulation pattern of hot rising and cooler downward-sinking material – the top of the deep-reaching solar convection zone. Convection plays a role for the thermal structure of the solar interior and the dynamo acting there, for the stratification of the photosphere, where most of the visible light is emitted, as well as for the energy budget ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008